2 00 6 A Classification of Integrable Quasiclassical Deformations of Algebraic Curves . ∗

نویسنده

  • E. Medina
چکیده

A previously introduced scheme for describing integrable deformations of of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification of Integrable Quasiclassical Deformations of Algebraic Curves. *

A previously introduced scheme for describing integrable deformations of of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.

متن کامل

Quasiclassical Deformations of Cubic Curves . ∗

A general scheme for determining and studying hydrodynamic type systems describing integrable deformations of algebraic curves is applied to cubic curves. Lagrange resolvents of the theory of cubic equations are used to derive and characterize these deformations.

متن کامل

ar X iv : n lin / 0 60 80 10 v 2 [ nl in . S I ] 1 8 A ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions

Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...

متن کامل

Se p 20 04 Integrable Deformations of Algebraic Curves . ∗

A general scheme for determining and studying integrable deformations of algebraic curves, based on the use of Lenard relations, is presented. We emphasize the use of several types of dynamical variables : branches, power sums and potentials.

متن کامل

A ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions

Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013